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Software-Defined Networking

Date plane design
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Control plane design
1. Single controller
2. Controller cluster

Real deployment
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Software-Defined Wide Area Networks (SD-WANs)

Large scale with many devices

Partitioning the network into domains

Distributed control plane
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Switch-level mapping solutions

Static Solutions
Statically placing, selecting, and mapping
backup controllers to switches before
controller failures.

Dynamic Solutions

RetroFlow dynamically sets up some offline
switches work under the legacy routing mode
without the controllers and maps the rest
offline switches with the SDN routing mode
to active controllers.
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Limitation of switch-level mapping solutions

Unbalanced programmability of offline flows

With the switch-level mapping, some recovered flows can have high programmability of
multiple rerouting paths while others are not recovered and cannot be rerouted at all.

Under utilization of active controllers
The switchlevel mapping solutions may cause the controller underutilization, which fails to
map some offline flows to the active controllers even when the active controllers are not
fully occupied.
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Design overview

PG aims at improving the path
programmability in offline flow
recovery under controller failures by
realizing the fine-grained flows to
controllers mappings.

If one or multiple controllers are
identified as failure, the master
calculates mappings between offline
flows from offline switches and
active controllers and deploy the
mappings into PG agents of offline
switches.
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Programmability of flows

Programmability calculating

The figure illustrates the path programmability of
two flows on switch a. For switch a, the path
programmability of one flow denotes the ability of
switch a to change this flow’s path. For flow from a
to b, there are three paths traversing switch a, and its
programmability is three on switch a. Similarly, flow
from a to c has two paths on switch a, and its
programmability is two on switch a.
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Optimal Flow-Controller Mapping (OFCM) problem

Constraints
Controller processing ability for flow state pulling

Flow programmability requirement

Objective

Maximize the recovered flows number and let
each flow have the similar programmability

Fully utilize the active controllers’ control resource

Minimize the conmunication overhead
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Heuristic solution: ProgrammabilityGurdian

For all offline flows
Flow f: Sorting the result of the Linear Programming
relaxation of OFCM problem in the descending order of
flow f.
Controller C: Decreasing the control overhead of flow f.
Flow-controller pair: (f, C)

Flow selection

Testing flows based on the ascending order of their
programmability in order to let each flow have the similar
programmability.

Controller assignment

Assigning the flow to the controller, which is based on
order above and keeps enough processing ability.
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Evaluation

Simulation setup

AT&T topology with 25 nodes and 112
(56*2) links

6 controllers

Any two nodes have a flow

Comparison algorithms
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RetroFlow

ProgrammabilityGurdian
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Evaluation

Two controllers failure
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Summary

New idea

We propose ProgrammabilityGuardian to improve the path programmability of
recovered flows with low communication overhead under multiple controller failures
through the fine-grained flow-level remapping enabled in existing SDN techniques.

New problem and solution

We formulate the flow recovery problem as an optimization problem called OFCM
problem and propose an efficient heuristic algorithm to solve the problem.

Good performance

We evaluate the performance of PG under different controller failure scenarios.
Simulation results show that PG recovers all offline flows with a balanced path
programmability.
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