
Improving the Path Programmability
for Software-Defined WANs
under Multiple Controller Failures

IEEE/ACM International Symposium on Quality of Service

Zehua Guo1, Songshi Dou1& Wenchao Jiang 2

1 Beijing Institute of Technology, Beijing, China
2 Singapore University of Technology and Design, Singapore

Presented by:
Songshi Dou
16th June 2020

https://iwqos2020.ieee-iwqos.org/

https://iwqos2020.ieee-iwqos.org/


Presentation Outline

1 1. Background
Software-Defined Networking
Software-Defined Wide Area Networks (SD-WANs)

2 2. Problems

3 3. Existing solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results

7 7. Summary
1 19



Software-Defined Networking

Date plane design
1. Programmable switch
2. White-box switch

Control plane design
1. Single controller
2. Controller cluster

Real deployment

2 19



Software-Defined Networking

Date plane design
1. Programmable switch
2. White-box switch

Control plane design
1. Single controller
2. Controller cluster

Real deployment

2 19



Software-Defined Networking

Date plane design
1. Programmable switch
2. White-box switch

Control plane design
1. Single controller
2. Controller cluster

Real deployment

2 19



Software-Defined Wide Area Networks (SD-WANs)

Large scale with many devices

Partitioning the network into domains

Distributed control plane
Quick response
Control resiliency

3 19



Software-Defined Wide Area Networks (SD-WANs)

Large scale with many devices

Partitioning the network into domains

Distributed control plane
Quick response
Control resiliency

3 19



Software-Defined Wide Area Networks (SD-WANs)

Large scale with many devices

Partitioning the network into domains

Distributed control plane
Quick response
Control resiliency

3 19



Presentation Outline

1 1. Background

2 2. Problems
Controller failures

3 3. Existing solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results

7 7. Summary

4 19



Controller failures

Maintaining Control Resiliency for Multiple Switches

Controller failures
Software bugs, Hardware failure, Power
outage

Maintaining control resiliency

Backup/slave controller

Failed switches remapping

Programmability

C1 C2 C3

D

s1
s2

f1
flow

3
programmability

f2
flow

3
programmability

4f3
f1
flow

2
programmability

4f3
3f4 3f4

s3

active 
controller

failed 
controller

overloaded
controller

switch-controller 
mapping

controller 
synchinization

switch with the 
SDN mode

switch with the 
legacy mode

5 19



Controller failures

Maintaining Control Resiliency for Multiple Switches

Controller failures
Software bugs, Hardware failure, Power
outage

Maintaining control resiliency

Backup/slave controller

Failed switches remapping

Programmability

C1 C2 C3

D

s1
s2

f1
flow

3
programmability

f2
flow

3
programmability

4f3
f1
flow

2
programmability

4f3
3f4 3f4

s3

active 
controller

failed 
controller

overloaded
controller

switch-controller 
mapping

controller 
synchinization

switch with the 
SDN mode

switch with the 
legacy mode

5 19



Controller failures

Maintaining Control Resiliency for Multiple Switches

Controller failures
Software bugs, Hardware failure, Power
outage

Maintaining control resiliency

Backup/slave controller

Failed switches remapping

Programmability

C1 C2 C3

D

s1
s2

f1
flow

3
programmability

f2
flow

3
programmability

4f3
f1
flow

2
programmability

4f3
3f4 3f4

s3

active 
controller

failed 
controller

overloaded
controller

switch-controller 
mapping

controller 
synchinization

switch with the 
SDN mode

switch with the 
legacy mode

5 19



Presentation Outline

1 1. Background

2 2. Problems

3 3. Existing solutions
Switch-level mapping solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results

7 7. Summary

6 19



Switch-level mapping solutions

Static Solutions
Statically placing, selecting, and mapping
backup controllers to switches before
controller failures.

Dynamic Solutions

RetroFlow dynamically sets up some offline
switches work under the legacy routing mode
without the controllers and maps the rest
offline switches with the SDN routing mode
to active controllers.

7 19



Switch-level mapping solutions

Static Solutions
Statically placing, selecting, and mapping
backup controllers to switches before
controller failures.

Dynamic Solutions

RetroFlow dynamically sets up some offline
switches work under the legacy routing mode
without the controllers and maps the rest
offline switches with the SDN routing mode
to active controllers.

C1 C2 C3

D

s2

C1

s1 s3

f1
flow

3
programmability

7 19



Presentation Outline

1 1. Background

2 2. Problems

3 3. Existing solutions

4 4. Limitation of existing solutions
Limitation of switch-level mapping solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results

7 7. Summary

8 19



Limitation of switch-level mapping solutions

Unbalanced programmability of offline flows

With the switch-level mapping, some recovered flows can have high programmability of
multiple rerouting paths while others are not recovered and cannot be rerouted at all.

Under utilization of active controllers
The switchlevel mapping solutions may cause the controller underutilization, which fails to
map some offline flows to the active controllers even when the active controllers are not
fully occupied.

9 19



Limitation of switch-level mapping solutions

Unbalanced programmability of offline flows

With the switch-level mapping, some recovered flows can have high programmability of
multiple rerouting paths while others are not recovered and cannot be rerouted at all.

Under utilization of active controllers
The switchlevel mapping solutions may cause the controller underutilization, which fails to
map some offline flows to the active controllers even when the active controllers are not
fully occupied.

9 19



Presentation Outline

1 1. Background

2 2. Problems

3 3. Existing solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian
Design overview
Programmability of flows
Optimal Flow-Controller Mapping (OFCM) problem
Heuristic solution: ProgrammabilityGurdian

6 6. Results

7 7. Summary
10 19



Design overview

PG aims at improving the path
programmability in offline flow
recovery under controller failures by
realizing the fine-grained flows to
controllers mappings.

If one or multiple controllers are
identified as failure, the master
calculates mappings between offline
flows from offline switches and
active controllers and deploy the
mappings into PG agents of offline
switches.

Programmability
Guardian Agent 1

Program-
mability
Guardian 
Master

Programmability
Guardian Agent N

Control 
Plane

Data 
Plane

 Controller active acknowledgement

Mapping 
deployment …

(a) ProgrammabilityGuardian structure (b) ProgrammabilityGuardian agent 
based on FlowVisor

Programmability
Guardian Agent

FlowVisor

SDN 
Switch

…

11 19



Design overview

PG aims at improving the path
programmability in offline flow
recovery under controller failures by
realizing the fine-grained flows to
controllers mappings.

If one or multiple controllers are
identified as failure, the master
calculates mappings between offline
flows from offline switches and
active controllers and deploy the
mappings into PG agents of offline
switches.

Programmability
Guardian Agent 1

Program-
mability
Guardian 
Master

Programmability
Guardian Agent N

Control 
Plane

Data 
Plane

 Controller active acknowledgement

Mapping 
deployment …

(a) ProgrammabilityGuardian structure (b) ProgrammabilityGuardian agent 
based on FlowVisor

Programmability
Guardian Agent

FlowVisor

SDN 
Switch

…

11 19



Programmability of flows

Programmability calculating

The figure illustrates the path programmability of
two flows on switch a. For switch a, the path
programmability of one flow denotes the ability of
switch a to change this flow’s path. For flow from a
to b, there are three paths traversing switch a, and its
programmability is three on switch a. Similarly, flow
from a to c has two paths on switch a, and its
programmability is two on switch a.

b
a

a->b
flow

3
programability

2a->c

c

12 19



Optimal Flow-Controller Mapping (OFCM) problem

Constraints
Controller processing ability for flow state pulling

Flow programmability requirement

Objective

Maximize the recovered flows number and let
each flow have the similar programmability

Fully utilize the active controllers’ control resource

Minimize the conmunication overhead

Complexity

An integer programming problem

NP-hard

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

13 19



Optimal Flow-Controller Mapping (OFCM) problem

Constraints
Controller processing ability for flow state pulling

Flow programmability requirement

Objective

Maximize the recovered flows number and let
each flow have the similar programmability

Fully utilize the active controllers’ control resource

Minimize the conmunication overhead

Complexity

An integer programming problem

NP-hard

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

13 19



Optimal Flow-Controller Mapping (OFCM) problem

Constraints
Controller processing ability for flow state pulling

Flow programmability requirement

Objective

Maximize the recovered flows number and let
each flow have the similar programmability

Fully utilize the active controllers’ control resource

Minimize the conmunication overhead

Complexity

An integer programming problem

NP-hard

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

13 19



Heuristic solution: ProgrammabilityGurdian

For all offline flows
Flow f: Sorting the result of the Linear Programming
relaxation of OFCM problem in the descending order of
flow f.
Controller C: Decreasing the control overhead of flow f.
Flow-controller pair: (f, C)

Flow selection

Testing flows based on the ascending order of their
programmability in order to let each flow have the similar
programmability.

Controller assignment

Assigning the flow to the controller, which is based on
order above and keeps enough processing ability.

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

14 19



Heuristic solution: ProgrammabilityGurdian

For all offline flows
Flow f: Sorting the result of the Linear Programming
relaxation of OFCM problem in the descending order of
flow f.
Controller C: Decreasing the control overhead of flow f.
Flow-controller pair: (f, C)

Flow selection

Testing flows based on the ascending order of their
programmability in order to let each flow have the similar
programmability.

Controller assignment

Assigning the flow to the controller, which is based on
order above and keeps enough processing ability.

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

14 19



Heuristic solution: ProgrammabilityGurdian

For all offline flows
Flow f: Sorting the result of the Linear Programming
relaxation of OFCM problem in the descending order of
flow f.
Controller C: Decreasing the control overhead of flow f.
Flow-controller pair: (f, C)

Flow selection

Testing flows based on the ascending order of their
programmability in order to let each flow have the similar
programmability.

Controller assignment

Assigning the flow to the controller, which is based on
order above and keeps enough processing ability.

C1 C2 C3

D

s3
s2

C1

s1

f1
flow

3
programmability

f2
flow

3
programmability

f3
flow

4
programmability

3f4

14 19



Presentation Outline

1 1. Background

2 2. Problems

3 3. Existing solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results
Evaluation

7 7. Summary

15 19



Evaluation

Simulation setup

AT&T topology with 25 nodes and 112
(56*2) links

6 controllers

Any two nodes have a flow

Comparison algorithms

Nearest

RetroFlow

ProgrammabilityGurdian

16 19



Evaluation

Simulation setup

AT&T topology with 25 nodes and 112
(56*2) links

6 controllers

Any two nodes have a flow

Comparison algorithms

Nearest

RetroFlow

ProgrammabilityGurdian

16 19



Evaluation

Two controllers failure

Performance metric

Recovered flow
percentage from
offline flows.

Programmability metric

The flow’s path
programmability.

More results in the
paper.

[13,20] [13,22] [2,13] [2,20] [2,22] [2,5] [2,6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
ID of failed controllers

60

70

80

90

100

110

R
ec

ov
er

ed
flo

w
p

er
ce

nt
ag

e
(%

)

RetroFlow PG Nearest

17 19



Evaluation

Two controllers failure

Performance metric

Recovered flow
percentage from
offline flows.

Programmability metric

The flow’s path
programmability.

More results in the
paper.

[13,20] [13,22] [2,13] [2,20] [2,22] [2,5] [2,6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
ID of failed controllers

60

70

80

90

100

110

R
ec

ov
er

ed
flo

w
p

er
ce

nt
ag

e
(%

)

RetroFlow PG Nearest

[13,20][13,22] [2,13] [2,20] [2,22] [2,5] [2,6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
ID of failed controllers

0

20

40

60

80

100

P
ro

gr
am

m
ab

ili
ty

RetroFlow (Left) PG (Middle) Nearest (Right)

17 19



Evaluation

Two controllers failure

Performance metric

Recovered flow
percentage from
offline flows.

Programmability metric

The flow’s path
programmability.

More results in the
paper.

[13,20] [13,22] [2,13] [2,20] [2,22] [2,5] [2,6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
ID of failed controllers

60

70

80

90

100

110

R
ec

ov
er

ed
flo

w
p

er
ce

nt
ag

e
(%

)

RetroFlow PG Nearest

[13,20][13,22] [2,13] [2,20] [2,22] [2,5] [2,6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
ID of failed controllers

0

20

40

60

80

100

P
ro

gr
am

m
ab

ili
ty

RetroFlow (Left) PG (Middle) Nearest (Right)

17 19



Presentation Outline

1 1. Background

2 2. Problems

3 3. Existing solutions

4 4. Limitation of existing solutions

5 5. Overview of ProgrammabilityGurdian

6 6. Results

7 7. Summary

18 19



Summary

New idea

We propose ProgrammabilityGuardian to improve the path programmability of
recovered flows with low communication overhead under multiple controller failures
through the fine-grained flow-level remapping enabled in existing SDN techniques.

New problem and solution

We formulate the flow recovery problem as an optimization problem called OFCM
problem and propose an efficient heuristic algorithm to solve the problem.

Good performance

We evaluate the performance of PG under different controller failure scenarios.
Simulation results show that PG recovers all offline flows with a balanced path
programmability.

19 / 19



Summary

New idea

We propose ProgrammabilityGuardian to improve the path programmability of
recovered flows with low communication overhead under multiple controller failures
through the fine-grained flow-level remapping enabled in existing SDN techniques.

New problem and solution

We formulate the flow recovery problem as an optimization problem called OFCM
problem and propose an efficient heuristic algorithm to solve the problem.

Good performance

We evaluate the performance of PG under different controller failure scenarios.
Simulation results show that PG recovers all offline flows with a balanced path
programmability.

19 / 19



Summary

New idea

We propose ProgrammabilityGuardian to improve the path programmability of
recovered flows with low communication overhead under multiple controller failures
through the fine-grained flow-level remapping enabled in existing SDN techniques.

New problem and solution

We formulate the flow recovery problem as an optimization problem called OFCM
problem and propose an efficient heuristic algorithm to solve the problem.

Good performance

We evaluate the performance of PG under different controller failure scenarios.
Simulation results show that PG recovers all offline flows with a balanced path
programmability.

19 / 19



Thank You!
Questions?


	1. Background
	Software-Defined Networking
	Software-Defined Wide Area Networks (SD-WANs)

	2. Problems
	Controller failures

	3. Existing solutions
	Switch-level mapping solutions

	4. Limitation of existing solutions
	Limitation of switch-level mapping solutions

	5. Overview of ProgrammabilityGurdian
	Design overview
	Programmability of flows
	Optimal Flow-Controller Mapping (OFCM) problem
	Heuristic solution: ProgrammabilityGurdian

	6. Results
	Evaluation

	7. Summary

