

IEEE 43rd International Conference on Consumer Electronics

Imaginations with Consumer Technology 11-14 January 2025 | Las Vegas, NV, USA | In-Person

Entanglement-Reusable Dynamic Routing for Quantum Networks

Junwei Wu, Songshi Dou, & <u>Kwan L. Yeung</u> *The University of Hong Kong*

Background

• What is a Quantum Network?

- Enables the transmission of quantum bits (qubits).
- Transmits information securely and efficiently.

Key Components

- Qubits: Capable of representing multiple states simultaneously.
- Quantum processors: Perform quantum computations on qubits.
- Communication channels: Pathways (e.g., optical fibers, satellites) that facilitate the transfer of qubits between processors.

Applications

- Quantum communication: Quantum key distribution (QKD).
- Quantum computing: Powerful quantum computing cluster.

Quantum Entanglement

- Two particles become interconnected.
- The state of one instantly influences the state of the other.

Quantum Swapping

Entanglement is transferred from one pair of particles to another pair.

Examples of quantum entanglement and quantum swapping.

Procedure of Entanglement Distribution

- Phase 1 (P1)
 - Received the sourcedestination pairs with the communication request.
- Phase 2 (P2)
 - Perform routing calculations for path selection and resource assignment.
 - Broadcast the routing output to every node.

The procedure of entanglement distribution.

Procedure of Entanglement Distribution

- Phase 3 (P3)
 - Each node exchanges its link states (entanglement results).
 - Only the nearest K-hop.
- Phase 4 (P4)
 - Perform quantum swapping to distribute entanglements.

The procedure of entanglement distribution.

• Metric: Expected Throughput (EXT) - E_t

- For a path *P* of *h* hops with width *W*:
 - Q_k^i : Probability that the k-th hop on path P can establish exactly i new successful entanglements.

$$Q_k^i = {W \choose i} p_k^i (1 - p_k)^{W - i}$$

• P_k^i : Probability that each of the first k hops of P can establish at least i new successful entanglements.

$$P_1^k = Q_1^i, \qquad P_k^i = p_{k-1}^i \times \sum_{l=i}^W Q_k^l + Q_k^l \times \sum_{l=i+1}^W P_{k-1}^l$$

• E_t : The weighted probability sum of path P in width from W to 1.

$$E_t = q^h \times \sum_{i=1}^W i \times P_h^i$$

Existing Works and Limitations

Existing Routing Strategies

- Q-CAST^[1] and FER^[2].
- Can be categorized as Contention-Free policies.
- One entanglement can only be assigned to one path for the teleportation of one qubit.

Their Limitations

- Quantum resources to specific paths are strictly reserved.
- Limit the EXT of quantum networks.
- The quantum resources are not fully utilized.

[1] S. Shi and C. Qian, "Concurrent entanglement routing for quantum networks: Model and designs," in Proc. of the ACM SIGCOMM, 2020.

[2] S. Zhang, S. Shi, C. Qian, and K. L. Yeung, "Fragmentation-aware entanglement routing for quantum networks," Journal of Lightwave Technology, vol. 39, no. 14, pp. 4584–4591, 2021.

Our Key Idea

Over-Subscription Policy

 One entanglement can be assigned to multiple paths for the potential teleportation choices of multiple qubits.

Advantages of Over-Subscription Policy

- Utilize quantum resources more efficiently.
- Allow the construction of more potential paths.
- Improve the performance of network throughput.

Metrics

- Total EXT: The sum of EXT values of all selected paths in quantum work
- Entanglement Utilization Rate (EUR): The conditional probability that one entanglement can be used in quantum teleportation when the entanglement is successfully established.

Free qubit

Entangled qubit

Quantum channel

Entanglement

$$k = 2$$

$$q = 1$$

Under Contention-Free Policy

- Only Path 1 is selected for construction.
- Path 2 and Path 3 can not be constructed for lack of entanglement resources in edge AB.
- Entanglement resources in edge BD and edge BE would be idle.

A motivation example.

IEEE 43rd International Conference on Consumer Electronics

Under Contention-Free Policy

- *Total EXT* = EXT of Path 1 = 0.3 * 0.4 = 0.12.
- EUR of entanglement A-B
 - = probability that Path 1 is successfully constructed / entanglement success rate
 - = (0.3 * 0.4) / 0.3 = 0.4.

S-D pair: (A,C), (A,D), (A,E)

Candidate paths:

Path 1: A->B->C

Path 2: A->B->D

Path 3: A->B->E

- Free qubit
- Entangled qubit
- -- Quantum channel
- Entanglement

$$k = 2$$

$$q = 1$$

A motivation example.

Under Over-Subscription Policy

- Paths 1, 2, and 3 can all be selected for construction.
- Total EXT
 - EXT sum of Paths 1, 2, and 3
 - = 0.3 * [0.4 + (1 0.4) * 0.3 + (1 0.4) * (1 0.3) * 0.3] = 0.211.

Candidate paths:

Path 1: A->B->C

Path 2: A->B->D

Path 3: A->B->E

Free qubit

> 0.12

Entangled qubit

Quantum channel

Entanglement

$$k = 2$$

$$q = 1$$

A motivation example.

Under Over-Subscription Policy

- EUR of entanglement A-B
 - probability that at least one path is successfully constructed / entanglement success rate
 - = 0.3 * [0.4 + (1 0.4) * 0.3 + (1 0.4) * (1 0.3) * 0.3] / 0.3 = 0.706.

S-D pair: (A,C), (A,D), (A,E)

Candidate paths:

Path 1: A->B->C

Path 2: A->B->D

Path 3: A->B->E

- Free qubit
- Entangled qubit
- -- Quantum channel
- Entanglement

$$k = 2$$

$$q = 1$$

A motivation example.

> 0.4

ERDRA Algorithm

Entanglement-Reusable Dynamic Routing Algorithm (ERDRA)

- Key features of ERDRA
 - Reusing pre-assigned entanglements.
 - Activating idle quantum resources.
- Novel metric Reusable Factor
 - The internal probability that the j-th hop of a candidate path can still offer exact i channels for future use even after path assignments and new generations.
- Main steps
 - Path selection.
 - Resource assignment.
 - Network topology updates.

ERDRA Algorithm

Detailed Algorithm

- Step 1. Search for the best path in terms of EXT metric between the pairs.
- Step 2.
 - Only the one with the highest EXT value is selected as the optimal solution for every iteration.
 - All relative resources (i.e., qubits and channels) would be reserved and assigned virtually.
- Step 3.
 - Remove the reserved resources from the residual graph.
 - Add in the newly established entanglements, with their presence quantified by the reusable factor of edges along the candidate path.
- Step 4. Repeat steps 1-3.

Evaluation

Simulation Setup

- Custom-built time-based simulator.
- An area of 100K units by 100K units square (1 unit = 1 km).
- Nodes are randomly scattered, and the distance of any two nodes is at least $50\sqrt{n}$ units (n denotes the number of nodes).
- Edges are generated based on the Waxman model.
- The number of qubits available for each node is independently uniformly selected from 10 to 14.
- The width of the edge is independently uniformly picked from 3 to 7.
- More detailed parameter settings are introduced in [1] and [2].

Summary

Simulation Results

- Network throughput.
 - Measured in terms of eps (i.e., ebits, entangled qubits) per time slot.
 - ERDRA allows more assigned resources to be *flexibly reused*.
 - More paths are engaged in the construction process.
 - ERDRA can outperform FER by 1.4 eps.

CDF of network throughput.

Summary

Simulation Results

- Throughput under different success rates.
 - In an environment where the quantum network is much degraded.
 - ERDRA can make the best use of the available resources for path construction.
 - More gain or less loss would be achieved in throughput performance.

Throughput under different channel success rates.

Summary

Main Contributions of Our Paper

Reusable Factor Metric

• Introduces a novel metric to evaluate the probability that reserved quantum resources for a candidate path can still offer available channels for other potential paths even after path assignments.

ERDRA Algorithm

 Proposes the ERDRA to enable the multiple assignment of quantum entanglement, improving the routing performance and EXT of quantum networks.

Performance Gains

 Demonstrates through simulations that ERDRA achieves substantial performance gains over state-of-the-art algorithms, effectively utilizing quantum resources and enhancing network throughput.

Thanks for your attention!

Q&A

