Oracle: QoS-aware Online Service Provisioning in Non-Terrestrial Networks with Safe Transfer Learning

Shengyu Zhang, Songshi Dou, Zhenglong Li, Lawrence K. Yeung, Tony Q.S. Quek

Background

- Utilizing constellations consisting of numerous Low Earth Orbit (LEO) satellites
 - Increasing number of satellites launched in recent years
 - Providing Internet service from space, particularly in remote areas
 - Mega-constellations: consisting of thousands of satellites in LEO
- Many companies are entering the market SpaceX, OneWeb, Telesat, etc.
 - Functioning as space-based Internet Service Providers (ISPs)
 - Having the capability to offer pervasive Internet connectivity worldwide
 - For example, as of 2024, SpaceX's Starlink has
 - Over 7,000 Starlink satellites launched
 - More than 4 million subscribers

Motivation

- Mhy QoS Is Challenging in Non-Terrestrial Networks (NTNs)
 - High satellite mobility → Frequent handovers every 2–3 minutes
 - Dynamic channel conditions caused by
 - satellite movement
 - atmospheric fading
 - obstructions
 - Measurement shows up to 80% throughput loss during handovers
 - Key challenge: maintaining service continuity and QoS in such environments

Problem Definition and Challenges

- QoS-aware Service Provisioning:
 \(\Delta \) What Makes It Hard
 - QoS in NTNs = {transmission rate, handover frequency}
 - Tradeoff:
 - Frequent switching → better rate, worse reliability
 - Fewer handovers → more stable, possibly lower throughput
 - Need to optimize this tradeoff in real time under dynamic channel conditions
 - Must meet service constraints: per-user rate, satellite capacity

Limitations of Existing Works

My Existing Methods Are Not Enough

- Many works optimize throughput or delay but assume static or slowly varying Channel State Information (CSI)
- Offline-trained models (e.g., MADRL) suffer from out-of-distribution issues
- No capability for online adaptation
- Infeasible decisions may violate QoS or system constraints
- Real-time, constraint-aware, adaptive decision-making is missing

Capability	Traditional	Offline RL	Oracle
Handles CSI dynamics	X	✓	✓
Online Adaptation	X	X	✓
Feasibility Guarantee	X	X	✓

Oracle Framework Overview

Oracle System Architecture

- Offline Training: General spatial-temporal patterns learned
- Online Adaptation: Few-shot fine-tuning with live data
- MPC Controller: Predicts short-horizon decisions
- Safe Transfer Learning: Ensures feasibility of actions

System and Channel Model

Channel Model in Dynamic NTN Environment

- - High satellite velocity → frequent Doppler shift
 - Weather and obstructions → highly variable loss
 - Mobility and rotation → dynamic antenna gain
 - → All of these require frame-level CSI modeling
- Signal model: $y_{k,m}(t) = \mathbf{h}_{k,m}^H(t) P_k \mathbf{s}_k(t) + n_k$
- Channel coefficient includes:
 - Antenna gains
 - Free-space path loss
 - Atmospheric fading
 - Shadowed-Rician fading
- SNR: $\gamma_{k,m}(t) = \frac{P_k \|\mathbf{h}_{k,m}(t)\|^2}{-2}$
- Rate: $R_{k,m}(t) = B \log_2 \left(1 + \gamma_{k,m}(t)\right)$

QoS Optimization Problem

Formulation of the QoS-Aware Provisioning Problem

Objective Function:

$$\Phi = \lambda \cdot \sum x_{k,m}(t) \cdot \hat{R}_{k,m}(t) - (1 - \lambda) \cdot \text{HandoverCost}$$

- First term → encourages high data rate assignments
- Second term → penalizes frequent satellite switching
- $\lambda \in [0, 1]$ allows system to control trade-off between rate and stability
- Constraints:
 - Each user connects to at most one satellite
 - Minimum rate requirement: $\sum_{m} x_{k,m}(t) \cdot \hat{R}_{k,m}(t) \ge R_k^{\text{th}}(t)$
 - Satellite capacity: $\sum_{k} x_{k,m}(t) \cdot \hat{R}_{k,m}(t) \le C_m$
- Explain λ:
 - $\lambda = 0 \rightarrow$ minimize handovers
 - $\lambda = 1 \rightarrow$ maximize rate

Model Predictive Control (MPC)

Short-Horizon Optimization with MPC

- Short horizon τ (e.g., 20s) used for prediction
- At time t_0 , optimize over t_0+1 to $t_0+\tau$
- Apply only the first decision x(t₀ + 1)
- Repeat process at each new time frame with updated status

Model Predictive Control (MPC)

- Extend-MPC Algorithm Using History to Enhance Prediction
 - Basic MPC only uses current network state
 - → Prone to reacting to transient fluctuations
 - → Misses underlying temporal trends (e.g., motion patterns, load buildup)
 - History-enhanced MPC = Extend-MPC
 - 1) Collect historical state vector at time frame to
 - 2) Predict network state over short horizon τ
 - 3) Solve the same MPC problem as in Slide 9
 - 4) Apply only the first decision
 - 5) Slide the window forward \rightarrow repeat at next frame
 - Benefits
 - Allows model to capture trends
 - Reduces over-reaction to short-term noise
 - Achieves better balance between reactiveness and stability

Safe Transfer Learning Framework

Fast Decision Making with Safe Generative Al

- GAI predicts decisions over control window directly
- Safety filter ensures:
 - Minimum QoS (Does it violate rate requirement?)
 - Capacity constraints (Does it exceed satellite capacity?)
- If invalid → fallback to nearest feasible satellite
- Loss function with penalty terms: $L = -\Phi + \mu_1 \cdot (QoS \text{ violation}) + \mu_2 \cdot (Capacity \text{ overload})$

Simulation Setup

Evaluation Setup Based on Starlink Constellation

- Key Parameters:
 - Carrier frequency: 28 GHz
 - Bandwidth: 500 MHz
 - Satellites: 1584 (72 orbits × 22 satellites)
 - Users: 10 UTs
 - Horizon: $\tau = 20s$, History: $T_0 = 10s$
 - Weather: χ ~ Uniform[0, 4]

Benchmark algorithm

- Always Nearest Satellite (ANS)
 - This scheme always finds the nearest satellite for each user and assigns each user to its nearest satellite.
- Longest Visible Time (LVT)
 - This scheme finds the satellite with the longest remaining visible time.

Results – λ Sensitivity

Oracle Performance Across QoS Priorities (λ)

- Fig. a: QoS
- Fig. b: Sum Rate
- Fig. c: Handover Frequency

• Summary:

- Oracle matches or outperforms ANS and LVT across various settings
- Dynamically balances performance depending on λ

Results - Scalability

Oracle Performance Across Different Number of UTs

- Fig. a: QoS
- Fig. b: Sum Rate
- Fig. c: Handover Frequency

Summary:

- As the number of UTs increases, ORACLE consistently achieves higher QoS.
- This demonstrates Oracle's scalability and robustness under increasing load.

Results - Robustness

Oracle Performance Across Different Satellite Capacities

- Fig. a: QoS
- Fig. b: Sum Rate
- Fig. c: Handover Frequency

Summary:

 When capacity is constrained, performance gaps are larger, showing Oracle's ability to optimize resource allocation under scarcity.

Slide 15

Results – Prediction Horizon

Oracle Performance Across Different Prediction Horizon (τ)

Fig. a: QoS

Fig. b: Sum Rate

Fig. c: Handover Frequency

(a) Performance of average QoS

- (b) Performance of average sum rates.
- (c) Performance of handover frequency.

• Summary:

 This shows Oracle's sensitivity to prediction horizon and supports the choice of a short, controlled horizon in MPC.

Conclusion

Oracle Summary:

- A fully online, adaptive framework for QoS-aware service provisioning in NTNs
- Integrates Model Predictive Control and Safe Transfer Learning
- Designed for real-time, constraint-aware, and scalable deployment

• Achievements:

- Up to 3× improvement in QoS over ANS and LVT baselines
- Maintains stable performance under varying:
 - User loads
 - Satellite capacity limits
 - QoS preference (via λ)

Benefits:

- Online adaptation to time-varying CSI
- Tradeoff optimization between handover and throughput
- Safe decisions under real-world system constraints

Thanks for your attention! Q&A