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Background

e Utilizing constellations consisting of numerous Low Earth Orbit (LEO) satellites
" Increasing number of satellites launched in recent years
= Providing Internet service from space, particularly in remote areas
= Mega-constellations: consisting of thousands of satellites in LEO

e Many companies are entering the market - SpaceX, OneWeb, Telesat, etc.
= Functioning as space-based Internet Service Providers (ISPs)
= Having the capability to offer pervasive Internet connectivity worldwide
= For example, as of 2024, SpaceX’s Starlink has
= Qver 7,000 Starlink satellites launched
= More than 4 million subscribers

e

»

TR, -/ - L
g d'f - pd S"u;

P

STARLINK Starlink Constellation

Slide 2



Motivation

e /A Why QoS Is Challenging in Non-Terrestrial Networks (NTNs)

High satellite mobility - Frequent handovers
every 2—3 minutes

Dynamic channel conditions caused by
= satellite movement
= atmospheric fading
= obstructions

Measurement shows up to 80% throughput
loss during handovers

Key challenge: maintaining service continuity
and QoS in such environments
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Problem Definition and Challenges

e QoS-aware Service Provisioning: /A What Makes It Hard

QoS in NTNs = {transmission rate, handover frequency}
Tradeoff:
= Frequent switching - better rate, worse reliability

= Fewer handovers - more stable, possibly lower throughput

Need to optimize this tradeoff in real time under dynamic channel conditions

Must meet service constraints: per-user rate, satellite capacity
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Limitations of Existing Works

e /A Why Existing Methods Are Not Enough

= Many works optimize throughput or delay but assume static or slowly varying Channel State
Information (CSl)

= Offline-trained models (e.g., MADRL) suffer from out-of-distribution issues
= No capability for online adaptation

= |nfeasible decisions may violate QoS or system constraints

= Real-time, constraint-aware, adaptive decision-making is missing

Capability Traditional Offline RL Oracle
Handles CSI dynamics X v v
Online Adaptation X X v
Feasibility Guarantee X X v
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Oracle Framework Overview

e Oracle System Architecture
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Offline Training: General spatial-temporal patterns learned

Online Adaptation: Few-shot fine-tuning with live data

MPC Controller: Predicts short-horizon decisions

Safe Transfer Learning: Ensures feasibility of actions
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System and Channel Model

e Channel Model in Dynamic NTN Environment

= /A Why is this modeling necessary?
= High satellite velocity - frequent Doppler shift

= Weather and obstructions - highly variable loss

&

= Mobility and rotation - dynamic antenna gain \\
= > All of these require frame-level CSI modeling i
Signal model: y,,.(t)=h; ()Ps (t)+n,

Channel coefficient includes:

= Antenna gains
= Free-space path loss

= Atmospheric fading

= Shadowed-Rician fading
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QoS Optimization Problem

e Formulation of the QoS-Aware Provisioning Problem

= QObjective Function:
O=2->x,, ()R, (#)—(1- 1) HandoverCost
= First term - encourages high data rate assignments g
= Second term = penalizes frequent satellite switching 4
= A€ [0, 1] allows system to control trade-off between rate and stabilit

= Constraints:
= Each user connects to at most one satellite
= Minimum rate requirement: » x, ()R, ()= R (¢)

= Satellite capacity: > %, (O-R,(<C,
= Explain A: k

= A =0 - minimize handovers

= A=1- maximize rate
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Model Predictive Control (MPC)

e Short-Horizon Optimization with MPC
= Short horizon t (e.g., 20s) used for prediction
= At time to, optimize over to+1 to to+t
= Apply only the first decision x(to + 1)
= Repeat process at each new time frame with updated status

Short horizon T At time t;, optimize over
(e.g. 20s) used forpetion to+1to ty+7
|

Prediction window

Current Predict Solve Apply

Future QOS First—Step
Status (T frames) Problem Decision

Slide 9



Model Predictive Control (MPC)

e Extend-MPC Algorithm - Using History to Enhance Prediction
= Basic MPC only uses current network state
= - Prone to reacting to transient fluctuations
= - Misses underlying temporal trends (e.g., motion patterns, load buildup)
= History-enhanced MPC = Extend-MPC
1) Collect historical state vector at time frame to
2) Predict network state over short horizon t
3) Solve the same MPC problem as in Slide 9
4) Apply only the first decision
5) Slide the window forward - repeat at next frame
= Benefits
= Allows model to capture trends
= Reduces over-reaction to short-term noise
= Achieves better balance between reactiveness and stability c e



Safe Transfer Learning Framework

e Fast Decision Making with Safe Generative Al

= GAI predicts decisions over control window directly

= Safety filter ensures:

= Minimum QoS (Does it violate rate requirement?)

= Capacity constraints (Does it exceed satellite capacity?)

= |f invalid = fallback to nearest feasible satellite

= Loss function with penalty terms: L =-® + 4, -(QoS violation) + 4, - (Capacity overload)
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Simulation Setup

Evaluation Setup Based on Starlink Constellation

= Key Parameters:
= Carrier frequency: 28 GHz
= Bandwidth: 500 MHz
= Satellites: 1584 (72 orbits x 22 satellites)
= Users: 10 UTs
= Horizon: T = 20s, History: To = 10s
= Weather: x ~ Uniform][0, 4]

Benchmark algorithm

= Always Nearest Satellite (ANS)

= This scheme always finds the nearest satellite for each user and assigns each user to its nearest
satellite.

= Longest Visible Time (LVT)
= This scheme finds the satellite with the longest remaining visible time.
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Results — A Sensitivity

Oracle Performance Across QoS Priorities (A)

= Fig.a: QoS
= Fig. b: Sum Rate
= Fig. c: Handover Frequency
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(a) Performance of average QoS.

Summary:
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(c) Performance of handover frequency.

= QOracle matches or outperforms ANS and LVT across various settings

= Dynamically balances performance depending on A
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Results — Scalability

Oracle Performance Across Different Number of UTs
= Fig.a: QoS
= Fig. b: Sum Rate

= Fig. c: Handover Frequency
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= As the number of UTs increases, ORACLE consistently achieves higher QoS.

= This demonstrates Oracle's scalability and robustness under increasing load. Slide 14



Results — Robusthess

Oracle Performance Across Different Satellite Capacities
= Fig.a: QoS
= Fig. b: Sum Rate

= Fig. c: Handover Frequency
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= When capacity is constrained, performance gaps are larger, showing Oracle's ability to

optimize resource allocation under scarcity. e



Results — Prediction Horizon

Oracle Performance Across Different Prediction Horizon (1)
= Fig.a: QoS
= Fig. b: Sum Rate
= Fig. c: Handover Frequency
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= This shows Oracle's sensitivity to prediction horizon and supports the choice of a short,

controlled horizon in MPC. Siide 16



Conclusion

e Oracle Summary:
= A fully online, adaptive framework for QoS-aware service provisioning in NTNs
= Integrates Model Predictive Control and Safe Transfer Learning
= Designed for real-time, constraint-aware, and scalable deployment

e Achievements:
= Up to 3x improvement in QoS over ANS and LVT baselines
= Maintains stable performance under varying:
= User loads
= Satellite capacity limits
= QoS preference (via A)
e Benefits:
= Online adaptation to time-varying CSI

= Tradeoff optimization between handover and throughput
= Safe decisions under real-world system constraints Slide 17



Thanks for your attention!
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