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Background

● Utilizing constellations consisting of numerous Low Earth Orbit (LEO) satellites

▪ Increasing number of satellites launched in recent years

▪ Providing Internet service from space, particularly in remote areas

▪ Mega-constellations: consisting of thousands of satellites in LEO

● Many companies are entering the market - SpaceX, OneWeb, Telesat, etc.

▪ Functioning as space-based Internet Service Providers (ISPs)

▪ Having the capability to offer pervasive Internet connectivity worldwide

▪ For example, as of 2024, SpaceX’s Starlink has

▪ Over 7,000 Starlink satellites launched

▪ More than 4 million subscribers

Starlink Constellation Slide 2



Motivation

● Why QoS Is Challenging in Non-Terrestrial N

▪ High satellite mobility → Frequent handovers 
every 2–3 minutes

▪ Dynamic channel conditions caused by 

▪ satellite movement

▪ atmospheric fading

▪ obstructions

▪ Measurement shows up to 80% throughput 
loss during handovers

▪ Key challenge: maintaining service continuity 
and QoS in such environments
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●  Why QoS Is Challenging in Non-Terrestrial Networks (NTNs)



Problem Definition and Challenges

● QoS-aware Service Provisioning:  What Makes It Hard

▪ QoS in NTNs = {transmission rate, handover frequency}

▪ Tradeoff:

▪ Frequent switching → better rate, worse reliability

▪ Fewer handovers → more stable, possibly lower throughput

▪ Need to optimize this tradeoff in real time under dynamic channel conditions

▪ Must meet service constraints: per-user rate, satellite capacity
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Limitations of Existing Works
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Capability Traditional Offline RL Oracle

Handles CSI dynamics ✗ ✓ ✓

Online Adaptation ✗ ✗ ✓

Feasibility Guarantee ✗ ✗ ✓

●  Why Existing Methods Are Not Enough

▪ Many works optimize throughput or delay but assume static or slowly varying Channel State 
Information (CSI)

▪ Offline-trained models (e.g., MADRL) suffer from out-of-distribution issues

▪ No capability for online adaptation

▪ Infeasible decisions may violate QoS or system constraints

▪ Real-time, constraint-aware, adaptive decision-making is missing



Oracle Framework Overview
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● Oracle System Architecture

▪ Offline Training: General spatial-temporal patterns learned

▪ Online Adaptation: Few-shot fine-tuning with live data

▪ MPC Controller: Predicts short-horizon decisions

▪ Safe Transfer Learning: Ensures feasibility of actions



System and Channel Model
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● Channel Model in Dynamic NTN Environment

▪  Why is this modeling necessary?

▪ High satellite velocity → frequent Doppler shift

▪ Weather and obstructions → highly variable loss

▪ Mobility and rotation → dynamic antenna gain

▪ → All of these require frame-level CSI modeling

▪ Signal model: 

▪ Channel coefficient includes:

▪ Antenna gains

▪ Free-space path loss

▪ Atmospheric fading

▪ Shadowed-Rician fading

▪ SNR:

▪ Rate: 
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QoS Optimization Problem
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● Formulation of the QoS-Aware Provisioning Problem

▪ Objective Function: 

▪ First term → encourages high data rate assignments

▪ Second term → penalizes frequent satellite switching

▪ λ ∈ [0, 1] allows system to control trade-off between rate and stability

▪ Constraints:

▪ Each user connects to at most one satellite

▪ Minimum rate requirement: 

▪ Satellite capacity: 

▪ Explain λ:

▪ λ = 0 → minimize handovers

▪ λ = 1 → maximize rate
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Model Predictive Control (MPC)
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● Short-Horizon Optimization with MPC

▪ Short horizon τ (e.g., 20s) used for prediction

▪ At time t₀, optimize over t₀+1 to t₀+τ

▪ Apply only the first decision x(t₀ + 1)

▪ Repeat process at each new time frame with updated status



Model Predictive Control (MPC)
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● Extend-MPC Algorithm - Using History to Enhance Prediction

▪ Basic MPC only uses current network state

▪ → Prone to reacting to transient fluctuations

▪ → Misses underlying temporal trends (e.g., motion patterns, load buildup)

▪ History-enhanced MPC = Extend-MPC 

1) Collect historical state vector at time frame t₀

2) Predict network state over short horizon τ

3) Solve the same MPC problem as in Slide 9

4) Apply only the first decision

5) Slide the window forward → repeat at next frame

▪ Benefits

▪ Allows model to capture trends 

▪ Reduces over-reaction to short-term noise

▪ Achieves better balance between reactiveness and stability



Safe Transfer Learning Framework
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● Fast Decision Making with Safe Generative AI

▪ GAI predicts decisions over control window directly

▪ Safety filter ensures:

▪ Minimum QoS (Does it violate rate requirement?)

▪ Capacity constraints (Does it exceed satellite capacity?)

▪ If invalid → fallback to nearest feasible satellite

▪ Loss function with penalty terms: 1 2(QoS violation) (Capacity overload) = − +  + L



Simulation Setup

● Evaluation Setup Based on Starlink Constellation

▪ Key Parameters:

▪ Carrier frequency: 28 GHz

▪ Bandwidth: 500 MHz

▪ Satellites: 1584 (72 orbits × 22 satellites)

▪ Users: 10 UTs

▪ Horizon: τ = 20s, History: T₀ = 10s

▪ Weather: χ ~ Uniform[0, 4]
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● Benchmark algorithm

▪ Always Nearest Satellite (ANS)

▪ This scheme always finds the nearest satellite for each user and assigns each user to its nearest 
satellite.

▪ Longest Visible Time (LVT)

▪ This scheme finds the satellite with the longest remaining visible time.



Results – λ Sensitivity

● Oracle Performance Across QoS Priorities (λ)

▪ Fig. a: QoS

▪ Fig. b: Sum Rate

▪ Fig. c: Handover Frequency

● Summary:

▪ Oracle matches or outperforms ANS and LVT across various settings

▪ Dynamically balances performance depending on λ Slide 13



Results – Scalability

● Oracle Performance Across Different Number of UTs

▪ Fig. a: QoS

▪ Fig. b: Sum Rate

▪ Fig. c: Handover Frequency

● Summary:

▪ As the number of UTs increases, ORACLE consistently achieves higher QoS. 

▪ This demonstrates Oracle's scalability and robustness under increasing load. Slide 14



Results – Robustness

● Oracle Performance Across Different Satellite Capacities

▪ Fig. a: QoS

▪ Fig. b: Sum Rate

▪ Fig. c: Handover Frequency

● Summary:

▪ When capacity is constrained, performance gaps are larger, showing Oracle's ability to 
optimize resource allocation under scarcity. 

Slide 15



Results – Prediction Horizon

● Oracle Performance Across Different Prediction Horizon (τ)

▪ Fig. a: QoS

▪ Fig. b: Sum Rate

▪ Fig. c: Handover Frequency

● Summary:

▪ This shows Oracle's sensitivity to prediction horizon and supports the choice of a short, 
controlled horizon in MPC.
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Conclusion

● Oracle Summary:

▪ A fully online, adaptive framework for QoS-aware service provisioning in NTNs

▪ Integrates Model Predictive Control and Safe Transfer Learning

▪ Designed for real-time, constraint-aware, and scalable deployment

● Achievements:

▪ Up to 3× improvement in QoS over ANS and LVT baselines

▪ Maintains stable performance under varying:

▪ User loads

▪ Satellite capacity limits

▪ QoS preference (via λ)

● Benefits:

▪ Online adaptation to time-varying CSI

▪ Tradeoff optimization between handover and throughput

▪ Safe decisions under real-world system constraints Slide 17



Thanks for your attention!

Q&A
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